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1 SUMMARY 
The Robust Deep Semantics for Language Understanding project was pursued under the Deep 
Exploration and Filtering of Text program. It addressed the problem of how computer systems 
could effectively extract knowledge from text documents, from both formally written sources 
like newspaper articles and from informal sources such as web forums, and in multiple 
languages, with our work covering English, Spanish, and Chinese. Our major goal was to 
innovate on new methods for text understanding and knowledge extraction. The project did 
important work in developing the use of deep learning methods for natural language 
understanding and in developing new, improved algorithms for textual relation extraction and 
coreference resolution. While full text understanding is still far from a solved problem, the main 
goals of the project were achieved. Our group produced a variety of new and highly influential 
algorithms. During the early years of the project, our group produced much of the most cited 
work in using deep learning for natural language understanding, before use of these techniques 
disseminated more broadly. Our algorithms posted state-of-the-art results on a number of 
domains and tasks, and, partly through our making our algorithms broadly available open source 
in an integrated fashion through our CoreNLP software framework, they have had a considerable 
influence. The algorithms have seen considerable use, by many people in academia, government, 
the military, and industry. 
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2 INTRODUCTION 
The Robust Deep Semantics for Language Understanding project pursued under the Deep 
Exploration and Filtering of Text (DEFT) program began with a focus on five areas: deep 
learning for natural language understanding, textual inferential relations, relation & event 
extraction by distant supervision, semantic parsing & ontology expansion, and coreference 
resolution. The overall goal was to develop a more effective means of understanding the 
meaning (semantics) of text in a robust and detailed way. Substantial fundamental research was 
done in all of these areas, as is discussed in following sections of this document. As time went 
by, the focus of the program converged in the direction of knowledge base population from text. 
That is, the question is how can we automatically convert a large collection of text documents to 
a knowledge base – or just database tables, if you prefer – which captures the entities that are 
mentioned in the text and the relations and events in which they are involved. The main foci of 
our research were relation extraction (or slot filling) for knowledge base population, coreference 
resolution, to detect mentions of the same entity, deep learning for NLP, and development of 
multilingual tools inside our CoreNLP software framework, so that text in multiple languages 
could be effectively ingested. Each year, our group participated in the NIST Knowledge Base 
Population evaluation, and this evaluation provides the key metric for our success and progress, 
but many individual algorithms were evaluated separately. 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 
3.1 FUNDAMENTAL DEEP LEARNING RESEARCH 
3.1.1 Overview 
While work on applying deep learning approaches to natural language processing (NLP) in the 
Stanford NLP Group had begun about two years prior to the start of the DEFT program, our 
continued work on this approach in DEFT led to many important early deep learning NLP 
papers. Although particular methods have evolved quickly, we acted as a standard bearer in the 
broader adoption of deep learning approaches to NLP. Most of the papers mentioned below 
already have several hundred or more citations on Google Scholar; two have over a thousand. 
Prominent deep learning NLP work done within this project includes: 
• Developed a new recursive neural tensor network model and new corpus, the Stanford 

Sentiment Treebank, for sentiment classification using a compositional tree-structured 
analysis of sentences (Socher et al. 2013a). The dataset has been widely used in the 
subsequent years. 

• Used morphological analysis of words to improve modeling the meaning of rare words, 
including development of a rare words similarity test set, still commonly used in evaluating 
word vectors (Luong et al. 2013). 

• Developed a dependency tree-based recursive neural network and applied it to multimodal 
image and language similarity (Socher et al. 2014). 

• Developed a compositional vector grammar parser for improved syntactic constituency 
parsing (Socher et al. 2013c). 

• Developed an improved method for knowledge base completion with a neural tensor 
network. (Socher et al. 2013b). 

• Developed a method of zero-shot learning in neural networks, improved by the use of cross-
modal transfer (Socher et al. 2013d). 

• Pioneered the use of neural network methods for dependency parsing, producing a fast and 
accurate neural dependency parser (Chen and Manning 2014). This was incorporated into 
CoreNLP, got many people motivated to explore use of neural networks for NLP, and it was 
the starting point for Google’s work that led to their SyntaxNet and Parsey McParseFace 
parsers, now available in the Google Cloud Platform. 

• Developed a Tree-LSTM model, which generalizes Long Short-Term Memory (LSTM) 
networks, a neural network architecture which has been used with great success recently for 
modeling sequential data, and applied it over trees to sentiment analysis (Tai et al. 2015). 

• Built pioneering end-to-end neural reading comprehension and question answering systems 
(Chen et al. 2016). 

During later parts of the project, building on our successful fundamental research on deep 
learning for NLP, we began actively exploiting use of deep learning methods for relation 
extraction and coreference resolution. That work is not described in this section but in sections 
6.2 and 6.5 below. 
3.1.2 Details 
3.1.2.1 Natural language parsing 
Natural language parsing has typically been done with small sets of discrete categories such as 
NP and VP, but this representation does not capture the full syntactic nor semantic richness of 
linguistic phrases and attempts to improve on this by lexicalizing phrases or splitting categories 
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only partly address the problem at the cost of huge feature spaces and sparseness. Instead, we 
introduced a Compositional Vector Grammar (CVG), which combines PCFGs with a 
syntactically untied recursive neural network that learns syntactico-semantic, compositional 
vector representations. The CVG improves the PCFG of the Stanford Parser by 3.8% to obtain an 
F1 score of 90.4%. It is fast to train and, implemented approximately as an efficient reranker, it 
is about 20% faster than the current Stanford factored parser (though slower than using the 
Stanford accurate unlexicalized PCFG parser alone). The CVG learns a soft notion of head 
words and improves performance on the types of ambiguities that require semantic information 
such as PP attachments. This line of work is further described in Socher et al. (2013c). 

Subsequently, we also developed a fast and accurate dependency parser that is based on deep 
learning. Current dependency parsers come in two flavors – transition-based parsers, which 
sacrifice accuracy for speed (about 450 sentences/second with unlabeled attachment score of 
89.4%) and graph-based parsers, which favor the reverse tradeoff (about 10 sentences/second 
with unlabeled attachment score of 90.7%). We developed a novel transition-based dependency 
parser using neural networks (NNs). The NN-based classifier learns and uses only a small 
number of dense features, rather than using millions of sparse indicator features. This is achieved 
by representing all words, part-of-speech tags and arc labels as dense vectors and modeling their 
interaction through a novel cubic activation function. As a result, our parser is extremely fast, 
while achieving about 2% improvement in unlabeled and labeled attachment scores on both 
English and Chinese datasets, as compared with other greedy transition-based parsers using 
indicator features. Our parser is able to parse more than 1000 sentences per second at 91.8% 
unlabeled attachment score for English. This NN dependency parser has been included in the 
Stanford CoreNLP system and is described further in Chen and Manning (2014). This work 
inspired a lot of people to try deep learning approaches and led to a lot of new work in further 
improving dependency parsing based on neural methods. 
3.1.2.2 Word representations 
We worked on extending neural word representations to understand morphologically complex 
words. Vector-space word representations have shown success in recent years at advancing state-
of-the-art performance across a variety of NLP tasks. However, common to most existing work 
on word representations in latent spaces, words are regarded as independent entities without any 
explicit relationship among morphologically related words being modeled. As a result, rare and 
complex words are often poorly estimated, and all unknown words are represented in a rather 
crude way using only one or a few vectors. We have addressed this shortcoming by proposing a 
novel model that is capable of building representations for morphologically complex words from 
their morphemes. We combined recursive neural networks (RNNs), where each morpheme is a 
basic unit, with neural language models (NLMs) to consider contextual information in learning 
morphologically-aware word representations. Our learned models outperformed existing word 
representations by a good margin on word similarity tasks across many datasets, including a new 
dataset we introduced, focused on rare words to complement existing ones in an interesting way. 
This work is described in more detail in Luong et al. (2013). 

Deep learning methods for learning vector space representations of words had already 
succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic, 
but the origin of these regularities had remained opaque. We analyzed and made explicit the 
model properties needed for such regularities to emerge in word vectors. The result is a new 
global log-bilinear regression model that combines the advantages of the two major model 
families in the literature: global matrix factorization and local context window methods. Our 
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model efficiently leverages statistical information by training only on the nonzero elements in a 
word-word co-occurrence matrix, rather than on the entire sparse matrix or on individual context 
windows in a large corpus. The model produces a vector space with meaningful substructure, as 
evidenced by its performance of 75% on a recent word analogy task. It also outperforms related 
models on similarity tasks and named entity recognition. This resulting GloVe model and word 
vectors using this technique that we distributed have been extremely widely used in NLP over 
the last five years. For at least four years after their publication, researchers found these to be the 
best word vectors for use in tasks like question answering and reading comprehension, although 
that may now be changing with the release of new word vectors from major U.S. technology 
corporations. This work is described in more detail in Pennington et al. (2014). 
3.1.2.3 TreeRNNs and Sentiment Analysis 

Our early research had a strong thread of trying to build tree-structured neural network 
models of language, in order to better capture the syntactic and semantic structure of sentences. 
Previous work of ours (Socher et al, 2011) on Tree Recursive Neural Networks (TreeRNNs) 
showed that these models can produce compositional feature vectors for accurately representing 
and classifying sentences or images. However, it had not yet been shown whether the RNN-
induced representations could be useful for learning joint meaning representations for both 
modalities. We built a new DT-RNN model, which embeds sentences based on their syntactic 
dependency trees. Unlike previous RNN-based models that use constituency trees, DT-RNNs 
naturally focus on the action and agents in a sentence. They are better able to abstract from the 
details of word order and syntactic expression. DT-RNNs outperform other recursive and 
recurrent neural networks, kernelized canonical correlation analysis and a bag-of-words baseline 
on the tasks of finding an image that fits a sentence description and vice versa. They also give 
more similar representations to sentences that describe the same image. The DT-RNN model is 
more invariant and robust to surface changes in the sentences like word order. This work is 
described in more detail in Socher et al. (2014). 

We developed a new Recursive Neural Tensor Network (RNTN) for modeling semantic 
composition. We demonstrated its effectiveness for predicting sentiment over sentence tree 
structures, showing it outperforms all of our previous recursive neural networks, our matrix-
vector recursive neural network and several bag-of-words baselines. Figure 1 is one picture of 
the system’s analysis of a contrastive sentence for negative/positive sentiment, with red (–) nodes 
showing sentiment negative words and phrases, and blue (+) nodes positive words and phrases. 
The example shows how the system correctly decides that the overall sentiment of the sentence 
is positive. 
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Figure 1: Sentiment analysis by a Recursive Neural Tensor Network 

In order to understand compositionality in sentiment detection, we not only require new 
powerful compositional models but also a richer resource for supervision and evaluation. To 
address this, we have introduced a new annotated corpus called the Stanford Sentiment 
Treebank, which includes fine-grained sentiment labels for 215,154 phrases in the parse trees of 
11,855 sentences. This is the first corpus with sentiment-labeled parse trees that allows for a 
complete analysis of the compositional effects of sentiment in language. The Recursive Neural 
Tensor Network (RNTN) that can accurately predict compositional semantic effects is tested 
with this new corpus. When trained on the new treebank, this model out-performs all previous 
methods on several metrics. It pushes the state-of-the-art in single sentence positive/negative 
classification from 80% up to 85.4%. The accuracy of predicting fine-grained sentiment labels 
for all phrases reaches 80.7%, an improvement of 9.7% over bag of features baselines. Lastly, it 
is the only model that can accurately capture the effects of negation and its scope at various tree 
levels for both positive and negative phrases. This work appears in Socher et al. (2013a). 

We later developed a new compositional tree-structured model for producing vector space 
representations of sentences. Our Tree-LSTM model generalizes Long Short-Term Memory 
(LSTM) networks, a neural network architecture which has been used with great success recently 
for modeling sequential data (e.g., Sutskever et al. 2014). Building on our previous work on tree-
structured recursive neural networks, our Tree-LSTM model composes the vector representation 
corresponding to each node of a syntactic parse tree as a function of the vectors corresponding to 
the node’s children. We demonstrated that Tree-LSTMs achieve new state-of-the-art results on 
two tasks: predicting the semantic similarity of sentence pairs and sentiment classification on the 
Stanford Sentiment Treebank. We then did additional experimental analysis to better understand 
how information is encoded and communicated within Tree-LSTM networks. This work is 
described in more detail in Tai et al. (2015). 
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3.1.2.4 Other topics 
In another piece of work, we have defined a new structured prediction framework that allows 

structures to be represented in a distributional fashion. In recent years, distributional 
representations of inputs have led to performance gains in many applications by allowing 
statistical information to be shared across inputs. However, the predicted outputs (labels, or more 
generally, structures like trees) are still treated as discrete objects, even though outputs are also 
not discrete units of meaning. In our new formulation for structured prediction, we represent 
individual labels in a structure as real-valued vectors allowing semantically similar labels to 
share parameters. We extend this representation to larger structures by defining compositionality 
using tensor products and showed that our approach is a natural extension to standard structured 
prediction approaches. We proposed a learning objective for jointly learning the model 
parameters and the label vectors and defined an alternating minimization algorithm for learning. 
We applied our formulation to two tasks - multiclass document classification and English and 
Basque part-of-speech tagging (a sequence model) and outperform standard structured learning 
baselines. This work is described in Srikumar and Manning (2014). 

In the latter part of the project, we started to expand our scope beyond single sentences and 
aim to develop end-to-end deep neural network systems for document-level understanding. 
Representing a whole document and extracting useful information remains a challenge, as 1) 
there are often thousands of words per document (compared to 20–40 words per sentence) and 2) 
it is important to handle the discourse structure between sentences as well as the syntactic 
structure within sentences. We developed a system for a reading comprehension task, that is, 
given a document and a cloze-style question, the goal is to infer the missing entity in the question 
based on an understanding of the document. The main idea is to apply sequential models (e.g., 
LSTMs) to encode all pieces of sentence-level (or even smaller text units) information within the 
document, and then to employ an attention mechanism (Bahdanau et al, 2015) to pick out the 
relevant snippets for retrieving the correct answer. On a recently released dataset from Google 
DeepMind (the DeepMind Daily Mail/CNN dataset), our system achieves 76% accuracy, with a 
single model (more with ensembling) exceeding the previous state-of-the-art results by more 
than 5% absolute. This work was an important early approach to end-to-end question answering 
models and was extended later for use on other datasets, at Facebook, the Toyota Technological 
Institute and elsewhere. The model is described in Chen et al. (2016). 

3.2 TEXTUAL INFERENTIAL RELATIONS 
3.2.1 Natural Logic 
Our major initiative has been working on using Natural Logic (van Benthem 2014) for common 
sense reasoning with text. Natural Logic is logic whose syntax is natural language and inference 
is performed by executing truth-preserving transformations at the textual level. Although 
structured knowledge bases are powerful for querying information in restricted domains, much 
of the world’s knowledge doesn’t fit into these sorts of strictly structured KBs. In these cases, it’s 
appealing to extract knowledge directly from text. For example, if a corpus contains the sentence 
“the cat ate a mouse” we should be able to infer that “no carnivores eat animals” is false. To 
accomplish this, we appeal to natural logic as a formalism that allows us to perform logical 
inference directly over the syntax of natural language. Stanford has been developing a large-scale 
natural logic reasoning engine which, given a web-scale corpus of facts, will infer whether a 
latent fact is true or false. 
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We attempted the task of database completion: given a database of true facts, we would like 
to predict whether an unseen fact should belong to the database. This is intuitively cast as an 
inference problem from a collection of candidate premises to the truth of the query. For example, 
we would like to infer that no carnivores eat animals is false given a database containing the cat 
ate a mouse. These inferences are difficult to capture in a principled way while maintaining high 
recall, particularly for open-domain text. Learned inference rules are difficult to generalize to 
arbitrary relations, and standard IR methods easily miss small but semantically important lexical 
differences. Furthermore, many methods require explicitly modeling either the database, the 
query, or both in a formal meaning representation (e.g., Freebase tuples). 

Although projects like the Abstract Meaning Representation (Banarescu et al., 2013) have 
made headway in providing broad-coverage meaning representations, it remains appealing to use 
human language as the vessel for inference. Furthermore, Open Information Extraction (OpenIE) 
and similar projects have been very successful at collecting databases of natural language 
snippets from an ever-increasing corpus of un-structured text. These factors motivate our use of 
Natural Logic – a proof system built on the syntax of human language – to create a system for 
broad coverage database completion. In addition to being able to provide strictly valid 
derivations, our system is also able to produce derivations which are only likely valid, 
accompanied by an associated confidence. We have shown that our system is able to capture 
strict Natural Logic inferences on the FraCaS test suite and demonstrated its ability to infer 
previously unseen facts with 48% recall and 93% precision on a common sense reasoning 
evaluation, using data from the Ollie OpenIE system and a test set drawn from ConceptNet. 

We proceeded to develop a system applying natural logic to knowledge base completion and 
question answering: NaturalLI. Rather than starting from a known schema-based knowledge base 
and inferring additional facts, NaturalLI operates over a plain-text knowledge base, and infers 
the truth of an arbitrary query based on the facts in this knowledge base. Natural logic itself is a 
formalism for inferring whether a sentence is entailed by another sentence based solely on the 
syntax of the sentence, rather than appealing to an explicit logical form. The NaturalLI question 
answering system was originally built to answer queries about common-sense facts in support of 
our development of probabilistic knowledge bases, but it was then extended to handle more 
complex real-world questions. To support this, a system was built to segment a long utterance 
into logically entailed, maximally concise clauses. This allows the system to digest articles with 
complex syntax into a set of atomic statements that can be searched over by NaturalLI. In 
addition, we developed a method for incorporating an evaluation function – akin to the 
evaluation functions in game-playing search – to assess whether a hypothesis is likely to be 
entailed by the knowledge base even if no proof derivation is found by the NaturalLI search. 
This allowed us to apply NaturalLI to the task of answering 4th grade multiple-choice science 
exams. We have shown that our system outperforms prior published work on the task, as well as 
strong IR baselines, achieving a score of up to 67% (74% on the training set). Future work will 
focus on applying this technique to a wider range of domains and datasets.  

Moreover, we could apply this system to provide an open information extraction (OpenIE) 
system. Given a long utterance, the system splits the utterance into short, independent clauses 
and applies Natural Logic inference to find the maximally concise forms of those clauses. Then, 
a small set of surface and dependency patterns extract OpenIE triples from these shortened 
clauses. Evaluation of this system on the KBP 2013 evaluation shows that the system 
outperforms both the University of Washington’s OpenIE-based submission for that year (by up 
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to 7 F1) and performs above the median and competitively with custom-trained relation 
extractors at 27 F1. This natural logic work is described in Angeli et al. (2014, 2015). 
Finally, we applied this technique to answering 4th grade science questions. To deal with the 
relatively syntactically complex sentences found in the source corpus of science texts, Stanford 
has developed a hybrid system that combines the benefit of strict logical reasoning with the 
broad-domain applicability of shallow statistical classifiers. In addition, we showed that natural 
logic inferences can be performed on dependency trees and can operate on partially distributed 
lattices other than the hypernym hierarchy – e.g., locations or relational entailment. The system 
achieves 67% accuracy on the test set of science questions, outperforming strong baselines and 
prior work. 
3.2.2 Models of semantic textual similarity 
Additionally, we worked on supporting the *SEM 2013 Shared Task on Semantic Textual 
Similarity. Semantic textual similarity (STS) is a graded measure of the degree of semantic 
similarity between two snippets of text. STS was first introduced as a shared task for SemEval 
2012. Building on the success of the SemEval 2012 shared task, we co-organized STS as the 
shared task for this year’s *SEM conference. For the primary STS evaluation task, the paired 
snippets correspond to two short statements, approximately one sentence in length. For 2013, we 
explored a new typed similarity task that assesses the similarity of typed fields (title, author, 
subject, description) in a structure database. The STS shared task was highly successful with 34 
research sites submitting 89 systems. 

The Stanford NLP group focused on refinement of the annotation instructions for the primary 
STS task. With the new instruction we were able achieve the following interannotator 
correlations across the different genres included in this year’s competition: 
• HDL: 85.0% 
• FNWN: 69.9% 
• OnWN: 87.2% 
• SMT: 65.8% 
As was done for the first STS evaluation, STS sentence pairs were annotated using 
crowdsourcing. We found that the genre and sources of data included in this year’s evaluation 
made it harder to obtain good interannotator agreement. In order to achieve good correlations, we 
needed to refine the instructions from last year’s annotation effort, as well as provide more 
training material for crowdsource annotators.  

In 2014, we participated in the SemEval 2014 Task 1 of evaluating Semantic Relatedness of 
full sentences, using our deep learning models of semantic similarity. We got a Pearson 
correlation of 0.827 between the predicted similarity scores and the gold standard ratings for 
sentence-sentence relatedness. This put us in second place for this task (with the 3 top teams 
having very similar scores), and well above all other teams from the U.S.A. 

3.3 RELATION EXTRACTION AND KNOWLEDGE BASE POPULATION 
3.3.1 Overview 
During the project, we produced two completely new implementations of KBP systems, and in 
between did a lot of work in extending and improving our models. Initially we worked on 
extending and improving an approach to KBP slotfilling based on using distant supervision 
between text documents and structured information corresponding to Wikipedia content, that is, 
Freebase. 
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In later years, we built a different, pioneering approach to KBP based around the use of a 
model backed by a large, in-memory database and more use of supervised learning techniques. 
We worked to add neural relation extraction components to our slotfilling systems. As part of 
this work, we built a large, crowdsourced, hand-labeled, supervised relation extraction dataset, 
TACRED (Zhang et al. 2017). 

We took part in the NIST TAC KBP evaluations each year 2013–2017, and our concerted 
work and new technologies for Slot Filling and Cold Start Knowledge Base Construction led to 
rapidly improving results: We went from being 6th place (about 6 F1 behind the leading team) in 
2013 to being the leading or equal leading team (depending on the metric chosen) in all of the 
2015, 2016, and 2017 evaluations. Furthermore, we expanded out our system from being 
English-only to being the only system that covered all of English, Chinese, and Spanish. We also 
explored how one could provide unbiased on-demand evaluation of KBP systems (Chaganty et 
al. 2017). 
3.3.2 Details 
3.3.2.1 TAC KBP Slotfilling: The first system 

Initially, Stanford substantially reorganized the structure of and rebuilt its existing KBP 
Slotfilling system codebase, which was a distant-supervision approach to relation extraction, 
based on the multi-instance, multi-label (MIML) work of Surdeanu, et al. (2012). The aim of the 
makeover was to optimize for easier extensibility and greater modularity of individual 
components. This modularity greatly simplified running subtasks of the KBP Slotfilling 
challenge, such as the answer validation track; in addition, it allowed for monitoring the 
performance of subsystems and fine-grained testing, which both improves immediate 
performance and simplified future maintenance of the code. This work was necessary 
infrastructural work for enabling our renewed participation in the TAC KBP challenges, starting 
from TAC KBP 2013. 

The new code was organized into five modules: information retrieval, datum processing, 
training, relation classification, and evaluation/slot filling. The first of these – information 
retrieval – provides the system with relevant documents and sentences when queried with an 
entity of interest (and an optional slot fill). This component encapsulates the entirety of the 
system’s dependence on the IR system Lucene, and much of its dependence on external files in 
general. The datum processing component handles the aspects of sentence and datum processing 
which are not dependent on Lucene or other IR components. This includes adding auxiliary 
annotations and featurization. The training module implements the training procedure – 
primarily, reading the training data and constructing the training dataset. This dataset is then used 
to train one of the relation extractors in the relation classification package, such as Stanford’s 
MIML-RE classifier (Surdeanu et al. 2012). The evaluation module handles the slot filling task 
at test time, including calling the relation extractor and applying a number of consistency and 
inference techniques on the resulting set of slot fills. 

We implemented consistency and inference for slot filling fir the 2013 KBP Slot Filling 
challenge. Moreover, we also developed a novel active learning driven distant supervision 
system and applied it to the KBP task. We defined a new example selection criterion that uses 
several instantiations of the MIML relation extraction system to the most informative examples 
to present to the human annotators. This approach further boosts the KBP F1. Our redesigned 
system showed significant improvements over the previous evaluation of the Stanford KBP 
system, as is discussed further in section 6. 
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3.3.2.2 TAC KBP Slotfilling and Knowledge Base Population: The second system 
Stanford developed a second new framework for KBP, optimized as a platform for quickly 
incorporating varied research contributions. The system makes use of a common initial linguistic 
annotation (basically, the output of Stanford CoreNLP), and a common pipeline for extracting 
relation mentions, entity linking, etc. Then, each relation extraction component can make use of 
this data in an easy to read format and output a list of relation triples based on the input. The 
framework then again reads these relation triples, and automatically processes them into a 
coherent knowledge base ready for evaluation. The framework is based around the Greenplum 
distributed database, much like DeepDive (Wu et al. 2015, Zhang et al. 2017), with the result 
that it is massively parallelizable, and can leverage the underlying database’s consistency and 
speed. However, unlike DeepDive, no requirement is placed on either the inference or the 
relation extraction portions of the pipeline – the entire system can be interfaced with an arbitrary 
program reading from stdin and writing to stdout. 

Starting in 2015, the Stanford NLP Group participated in the TAC KBP challenge using this 
new database-backed KBP system. We earned the top score among teams submitting Cold Start 
Slot Filling systems.  

Stanford tackled the challenge of impoverished training data for KBP by appealing to a self-
trained bootstrapping approach. In self-trained bootstrapping, a set of high-precision patterns was 
manually created (informed by the 2013 evaluation set) – a system in itself already competitive 
with many of the top teams. These patterns were then run on the TAC-KBP corpus to extract 
high-precision positive sentences for each relation. These sentences, along with randomly chosen 
negatives, are then used to train classifiers. This silver-standard data can then be used to train any 
number of classifiers. In practice, the extractions from these patterns were used as noisy training 
data for (1) a supervised classifier trained with logistic regression; and (2) a deep learning LSTM 
classifier. The inclusion of a small amount of supervised data, collected in Angeli et. al (2014), 
ensures that the model learns more than just the patterns provided. While both distant 
supervision and this bootstrapping approach provide noisy data, our performance on the TAC 
KBP task suggested that high-precision (if somewhat template-like) data is at least as if not more 
valuable than the more-varied-but-noisier distantly supervised data on which we and many other 
teams had previously relied. 

In later years, we worked to progressively refine and improve this system. In 2016, we 
performed a thorough error analysis at each step of the pipeline that led to the following 
significant improvements: First, we improved our English fine-grained NER system by 
expanding its coverage on job title and GPE entities and enabled the capture of hierarchical GPE 
mentions (i.e., a GPE mention inside an organization mention). Second, we experimented with a 
new deep learning relation extractor that combines convolutional neural network and recurrent 
neural network (LSTM) and is trained on a large crowdsourced dataset. This new relation 
extractor significantly improves the recall of the entire English system. Third, we used a new 
SVM-based model ensembling technique to combine 5 pattern and rule-based relation extractors, 
a self-trained supervised extractor from our 2015 KBP system, and a new deep learning system 
as mentioned above. Finally, we recognized that one of the major source of losses in the KBP 
pipeline was entity detection. Shifting away from traditional CRF based NER systems, we built a 
neural NER system, based on a Bi-directional LSTM-CNNs-CRF model by Ma and Hovy 
(2015), which improved F1 scores to 87.43 F1 from our last year’s score of 82.69. This also 
translated into gains on the TAC KBP 2017 task with our system gaining 2–3 F1 points across 
different metrics. The improved systems were used in our final year KBP systems. 
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3.3.2.3 Neural network relation extraction systems and TACRED 
Deep learning methods had been under-investigated for the TAC KBP slot filling tasks, mainly 
due to two reasons: (1) existing deep learning models are insufficiently tailored for the relation 
extraction problem; and (2) a large-scale dataset that is better customized for the TAC KBP slot 
filling tasks did not exist. In 2016, we began jointly tackling these two problems. First, we 
designed a neural architecture that makes use of a novel position-aware attention mechanism. 
This model is better tailored for the relation extraction task as it learns representations of the 
relation by jointly modeling the semantic information and the entity positions in the sentence 
being classified. Second, in order to power the new neural model, we collected a new large-scale 
dataset named the TAC Relation Extraction Dataset (TACRED), mainly via crowdsourcing. This 
dataset was created by making use of the TAC KBP 2009–2014 evaluation corpus and reusing 
the 41 original TAC KBP relation types. The resulting dataset contains 106,264 examples – an 
order of magnitude larger than the largest existing relation extraction dataset.  

The combination of the new TACRED dataset and the novel neural architecture leads to 
state-of-the-art relation extraction and slot filling performance. In an evaluation on the relation 
extraction task using TACRED, our neural model has outperformed the best previous neural 
architecture by 3.5% in F1 score. When our neural model was explored in concert with a pattern-
based system on the TAC KBP 2015 Cold Start Slot Filling evaluation task, the system achieves 
an F1 score of 26.7%, which exceeds the 2015 slot filling winning system by 4.5%. This system 
was used as part of an ensemble in our final year TAC KBP system. The ensembling of this 
model with other extractors gave the highest recall and was the best-performing model on the 
TAC KBP 2017 evaluation for the English slot-filling task.  
3.3.2.4 TAC KBP Slotfilling: Building a multilingual system 
The TAC KBP 2016 challenge introduced two new multilingual tracks: apart from English, there 
was now Chinese and Spanish, as well as a new cross-lingual track. We worked that year on the 
development of an entirely new Chinese KBP system. For our 2016 Chinese system, our 
contribution can be summarized as follows: First, we developed a new Chinese fine-grained 
NER system that consists of a retrained statistical tagger, a rule-based numeric NER tagger and a 
gazetteer-based tagger. This new system pushed the number of supported NER labels to 22 (from 
the original 5 labels). Second, we employed a new gazetteer-based Chinese entity linking system. 
Third, we developed five entirely new Chinese relation extractors, namely two pattern-based 
extractors, a distantly supervised extractor, and two rule-based extractors. We used a model 
combination of these five extractors to form our final submissions. Our final slot filling 
submissions outperformed all other teams in almost all of the English evaluation measures and 
led on some Chinese evaluation measures in the official evaluation. 

In 2017, we have made several improvements to the Chinese KBP system. First, the Chinese 
system now has better processing ability for XML tags in discussion forums. We made use of 
this improvement to incorporate more information, such as post authorship, into the annotation 
of discussion forum text. Second, we made improvement of the Chinese NER systems, by jointly 
improving our gazetteers and augmenting our training data, and to the pattern-based and 
statistical Chinese relation extractors. We added new surface pattern-based rules to our rule-
based extractor and a new specialized extractor for extracting location of headquarters from the 
name of an organization. 

In 2017, we also developed a new KBP system for Spanish. The system combines statistical, 
rule-based, and gazetteer-based NER taggers to perform fine-grained NER for Spanish. We built 
gazetteers for a new fine grained NER, which improves relation extraction for certain relation 
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types. We also added a new HeidelTime date annotator, to extract dates and hence date relations. 
It then does entity linking with a gazetteer-based system. We retrained our CRF based NER 
systems for Spanish using more annotated data, in particular using in-domain data for discussion 
forums which improved performance on Spanish from 59.8 F1 to 73.2 F1. Our system for 
Spanish relation extraction was rule-based. We built two pattern-based relation extractors: one 
based on token-level regular expressions over sequences and one using dependency-tree regular 
expressions. We constructed more than 2,400 surface patterns and 500 dependency-based 
patterns. However, a lack of good dependency parses was preventing the latter extractor from 
performing well. We were able to incorporate our separate work on a parser for CoNLL 2017 
“Shared Task on Multilingual Parsing from Raw Text to Universal Dependencies” for Spanish, 
which was the best performing parser and POS tagger in that evaluation (Dozat et al. 2017). This 
deep neural network parser had a graph-based architecture and a bi-affine attention mechanism 
which greatly improved the parses and hence drastically improved the F1 score of our relation 
extractor. There is still ample room to further extend this system to handle dropped pronouns and 
coreference as well as explore using machine learning relation extractors. 
3.3.2.5 Removing bias in TAC KBP system evaluation 
A key problem in improving relation extraction system performance that we identified was that 
evaluation using previous years’ assessments with a closed-world assumption leads to a 
significant bias against novel systems. This is particularly disadvantageous for machine learning 
based approaches as the systems are penalized for predicting novel but presumably correct 
relations. While the TAC KBP challenge doesn’t suffer from this bias, it is not amenable to a 
short development cycle. As a solution, we proposed a new evaluation methodology, on-demand 
evaluation, which avoids pooling bias by querying crowd workers, but to minimize cost, does it 
selectively, leveraging previous systems’ predictions when possible. We then compute the new 
system’s score based on the predictions of past systems using importance weighting. We 
implemented our framework and made a publicly available evaluation service where researchers 
can evaluate their own KBP systems. We piloted this service by evaluating three distinct systems 
on the 2016 TAC KBP corpus for about $300 a system (a fraction of the cost of official NIST 
evaluation). The Mechanical Turk crowdsourcing interface for this system is shown in Figure 2. 
This system is further described in Chaganty et al. (2017). 

 
 

Figure 2: Crowdsourcing interfaces for: (a) entity detection and linking; (b) relation extraction 

3.3.2.6 Other work 
In 2017, together with colleagues from Rensselaer Polytechnic Institute (RPI), the University of 
Illinois at Urbana-Champaign (UIUC), Cornell University, Columbia University, Johns Hopkins 
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University, and the University of Pennsylvania, we built a joint system, Tinkerbell, which 
covered a complete knowledge base construction from textual input project, including, relations, 
events, beliefs, sentiment, and entity linking. Our contribution was to do the basic linguistic 
analysis (via CoreNLP) and the relation extraction for all three languages (Chinese, Spanish, and 
English). This effort allowed us to experiment with the work on entity linking from RPI and 
UIUC. 

Early in the project, we applied neural networks to the task of completing a knowledge base. 
Knowledge bases provide applications with the benefit of easily accessible, systematic relational 
knowledge but often suffer in practice from their incompleteness and lack of knowledge of new 
entities and relations. Much work has focused on building or extending them by finding patterns 
in large unannotated text corpora. In contrast, we did research aiming to complete a knowledge 
base by predicting additional true relationships between entities, based on generalizations that 
can be discerned in the given knowledge base. We introduced a neural tensor network (NTN) 
model which predicts new relationship entries that can be added to the database. This model can 
be improved by initializing entity representations with word vectors learned in an unsupervised 
fashion from text, and when doing this, existing relations can even be queried for entities that 
were not present in the database. Our model generalized well and outperformed several existing 
models for this problem and can classify unseen relationships in WordNet with an accuracy of 
75.8%. This work is described in Socher et al. (2013b). 
Additionally, Stanford worked on an AMR aligner and parser, exploring a number of techniques 
for both. We have shown that an aligner similar to the IBM models for machine translation—
adapted to a sentence-to-graph scenario—performs well at the task; with the addition of domain-
specific rules we have created an aligner which they believe is state-of-the-art. We worked on 
creating a full end-to-end AMR parser. Approaches ranged from a CCG-like CKY parser, a 
greedy shift-reduce parser, and a hierarchical recursive HMM procedure. The best performing 
system is a translation from a number of NLP components to their associated AMR syntax, 
including the extended semantic roles of Srikumar and Roth (2011), the output of CoreNLP, 
among other components. We had hoped that this work could improve relation and event 
extraction, but this wasn’t realized within the bounds of this project. This work is further 
described in Werling et al. (2015). 

3.4 SEMANTIC PARSING 
3.4.1 Semantic Parsing for Freebase 
Semantic parsing focuses on mapping natural language utterances into logical forms that can be 
executed against a knowledge-base. Traditional approaches for semantic parsing have two 
limitations (a) they require annotated logical forms as supervision (b) they operate in limited 
domains where the number of relations in the ontology is small. We have addressed these 
limitations and developed a semantic parser that is trained over question-answer pairs and scales 
up to thousands of both atomic and composite relations in a large knowledge-base with a 
complex ontology (Freebase). 

A major challenge in scalable semantic parsing is covering the large ontology (the large 
number of knowledge base relations). We handle this challenge using two complementary 
strategies: (a) we constructed a lexicon that maps natural language phrases to atomic and 
composite Freebase relations by aligning a large text corpus to Freebase; (b) We introduced a 
novel “bridging” operation that suggests relations that are compatible with entities and other 
logical predicates present in the context of a particular query. We developed a semantic parser 
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that scales up to Freebase, which is a large knowledge base consisting of more than 40 million 
entries and 600 million facts. Furthermore, instead of relying on annotated logical forms, which 
is especially expensive to obtain at large scale, we learn from question-answer pairs. We 
developed a framework to reliably determine the semantically correct logical form from partial 
supervision. One recent trend for training a semantic parser is to use the value resulting from 
executing the logical form, rather than the logical form itself, for supervision. This training 
signal is insufficient for more complex sentences, which can yield many semantically incorrect 
parses that execute to the correct answer. Our framework efficiently searches for all candidates’ 
logical forms that execute to the correct answer, and then use either an unsupervised alignment 
approach or a small amount of human annotation to pick the semantically correct one. The final 
system is able to understand the meaning and compositionality of complex logical operations 
such as “the most”, “average”, “difference”, and “same as”. The new semantic parser uses two 
novel operations to tackle this problem of mapping natural language phrases to predicates in the 
Knowledge-base (KB). The first operation is alignment, in which we use a large snapshot of the 
web and OpenIE tools to align text phrases against the KB. The second operation is bridging, in 
which we suggest KB predicates that are expressed implicitly in the question using other KB 
predicates that are expressed more explicitly. For example, given the question “Who did Tom 
Cruise Marry in 2006?” we can combine alignment and bridging to construct the complex logical 
form 𝜆𝜆𝜆𝜆.∃𝑦𝑦.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦) ∧ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∧ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦, 2006), which 
evaluates on Freebase to “Katie Holmes”. 

We evaluated our parser on a recently released data set (Cai and Yates, 2013) that covers 
more than 600 Freebase relations. We found our parser outperformed a state-of-the-art parser 
(62.7% to 59%), despite the fact that its training signal is weaker (question-answer pairs rather 
than logical forms). We then collected a new and realistic data set of questions by performing 
breadth-first search using the Google Suggest API, and generated answers with Amazon 
Mechanical Turk. On this challenging data set we have achieved 35.7%, an 8.3% improvement 
over a natural baseline. This work was published as Berant et al. (2013) and was made available 
open source at https://nlp.stanford.edu/software/sempre/. 

A central challenge in semantic parsing is handling the myriad ways in which knowledge 
base predicates can be expressed. Traditionally, semantic parsers are trained primarily from text 
paired with knowledge base information. Subsequently, we developed a new semantic parsing 
approach that exploits the much larger amounts of raw text not tied to any knowledge base. 
Given an input utterance, we first use a simple method to deterministically generate a set of 
candidate logical forms with a canonical realization in natural language for each. Then, we use a 
paraphrase model to choose the realization that best paraphrases the input and output the 
corresponding logical form. We defined two simple paraphrase models, an association model 
and a vector space model, and trained them jointly from question-answer pairs. Our system 
PARASEMPRE improved state-of-the-art accuracies on two recently released question-
answering datasets. We believe that our approach opens a window of opportunity for learning 
semantic parsers from raw text not necessarily related to the target KB. 
3.4.2 Knowledge Extraction from Web Tables 

Semantic parsing also requires a KB with a fine-grained ontology. We worked on building 
such a KB from semi-structured web pages. Existing information extraction systems rely on seed 
examples or redundancy across multiple web pages. We considered a new zero-shot learning task 
of extracting entities specified by a natural language query (in place of seeds) given only a single 
web page. Our approach defines a log-linear model over latent extraction predicates, which 

https://nlp.stanford.edu/software/sempre/
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select lists of entities from the web page. We tackled the challenge of defining features on widely 
varying candidate entity lists by abstracting list elements and using aggregate statistics to define 
features. Finally, we created a new dataset of diverse queries and web pages and showed that our 
system achieves significantly better accuracy than a natural baseline. 
We developed a novel parsing algorithm that learns a strategic policy for exploring this space, 
and substantially reduces the number of logical forms considered by the parser. The algorithm 
controls parsing by choosing the highest-scoring parsing action from an agenda, and learns an 
appropriate scoring function from data, using a reinforcement learning algorithm. We 
demonstrated that our parser is 8 times faster than prior work, while obtaining state-of-the-art 
accuracy. 
Our work aims to increase both the breadth of the knowledge source and the depth of logical 
expressiveness by training a system to analyze an HTML table and answer a complex question 
based on the table. The absence of a fixed data schema in semi-structured Web tables enables 
question answering on knowledge from a much broader domain. Our algorithm allows the table 
to influence the construction of parse trees, making it generalize well to even previously unseen 
tables. In addition, our parsing algorithm uses highly recursive deduction rules to construct parse 
trees with expressive logical predicates, making it able to handle a wider scope of logical 
operations and deeper linguistic compositionality. In addition to the algorithm, we also released a 
large dataset of this task to encourage research on semantic understanding of semi-structured 
data.  
3.4.3 Other work 
Another challenge of semantic parsing is learning the semantic lexicons of new domains. To 
approach it, we developed a new framework for quickly building a semantic parser in a new 
domain without initial examples from that domain. In essence, given a pair of an in-domain seed 
lexicon and the syntax of the target logical form, the framework generates new logical forms 
along with a canonical natural language gloss and asks people to paraphrase the gloss. From the 
paraphrased sentences, the system can not only learn new words for concepts in the new domain 
(e.g., “attend X” = education is X), but also learn sub-lexical compositionality where a short 
phrase describes a complex concept (e.g., “mother of X” = parent of X who is female). Within a 
few hours of such human “training”, the framework was able to build semantic parsers for seven 
different domains (Wang et al. 2015). 

We also examined mapping descriptions of scenes to 3D geometric representations. Prior 
work on the text to 3D scene generation task has used manually specified object categories and 
language that identifies them. We introduced a dataset of 3D scenes annotated with natural 
language descriptions and learn from this data how to ground textual descriptions to physical 
objects. Our method successfully grounds a variety of lexical terms to concrete referents, and we 
show quantitatively that our method improves 3D scene generation over previous work using 
purely rule-based methods. We evaluated the fidelity and plausibility of 3D scenes generated 
with our grounding approach through human judgments. This work is described more fully in 
Chang et al. (2014, 2015). 

Finally, we experimented with training a sequence-to-sequence neural semantic parsing 
model using inferred logical forms as supervision. Our analysis reveals that the model effectively 
learns general logical form structures (with 92% accuracy on artificial data) but has some 
challenges at identifying lexical items and distinguishing contextual words in the utterance from 
content words. In future work, we intend to undertake an additional project that addresses these 
challenges directly. 
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3.5 COREFERENCE RESOLUTION 
3.5.1 Overview 
We initially explored methods to improve the rule-based or “sieve” coreference system that we 
had built in 2011 (winning the CoNLL 2011 Shared Task on Coreference over OntoNotes data). 
We added a classifier to detect singleton mentions and methods for better modeling of full 
nominal coreference emphasizing the difference between what is “similar” (e.g., “Facebook” and 
“Google”) vs. what can be coreferent (e.g., “Google” and “the search giant”) and started to build 
a hybrid rule-based and machine learning system. 

Subsequently, we began exploring fully learned approaches to coreference resolution. We 
first built a statistical machine learning coreference system, which was based around entity 
models (Clark and Manning 2015). Subsequently we built two versions of neural coreference 
systems, one again based on entities but now using neural similarity functions (Clark and 
Manning 2016a) and the other just a mention-pair classifier trained via imitation learning (Clark 
and Manning 2016b). All three of these systems were the best-performing English coreference 
system at the time of their publication. 

We also extended both our sieve coreference system and our neural coreference systems to 
Chinese and did some limited exploration of coreference for Spanish. 
3.5.2 Details 
3.5.2.1 Extending our rule-based and hybrid “sieve” coreference systems 

We initially explored methods for improving our existing (rule-based) coreference resolution, 
which had won the CoNLL 2011 Shared Tasking on coreference over OntoNotes data (Lee et al. 
2011). One is a classifier that attempts to detect via discourse features singleton mentions, which 
should not be coreferent with anything (Recasens et al. 2013). This work got the NAACL 2013 
best short paper award. The initial work was prior to the DEFT project, but the DEFT project 
allowed us to integrate this work into the Stanford CoreNLP deterministic coreference resolution 
system, giving about a 0.6 F1 improvement on CoNLL 2011 F1. 
We then developed a new hybrid statistical sieve system for English. The new architecture 
replaces rule-based sieves with statistical ones that are based on random forests to model feature 
interactions. In addition, we have also incorporated richer linguistic information (such as 
discourse), new datasets and higher precision context information to address linking common 
nouns. We worked to make this new hybrid statistical sieve system for English faster and lighter. 
One of the biggest obstacles to fast coreference on documents is that until now our coreference 
systems required constituency parsing, and our constituency parser was quite slow. The 
improved system relies solely on a dependency parser rather than a constituent parser. By 
swapping parsers, we incur a very small (about 1%) loss in performance, but the system is much 
faster, since we can use it with our neural dependency parser, which is orders of magnitude faster 
than constituency parsers. We also removed some expensive features that weren’t that important 
in improving performance, with the result that the model is smaller than before. Using this, we 
successfully incorporated the coreference resolver into our KBP system, which increased the 
system’s recall by allowing it to process pronominal mentions. Second, we worked on porting 
our sieve-based coreference system to Chinese. We released in CoreNLP a deterministic sieve-
based Chinese coreference resolution system that demonstrates comparable performance with the 
then state-of-the-art systems on the CoNLL 2012 Chinese coreference resolution task. 
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3.5.2.2 New statistical and neural network approaches to coreference 
Beginning in late 2014, we began exploring new machine learning approaches to coreference 
resolution, initially an entity-centric probabilistic model and then a series of neural network-
based coreference systems. 
We first developed a coreference system that learns an effective policy for incrementally 
building up coreference clusters. The system operates by greedily merging clusters of mentions it 
predicts are likely to be coreferent. Training a system to do this is challenging because (1) it 
requires defining features between clusters of mentions instead of pairs and (2) the number of 
possible cluster merges is large. We address these challenges by decomposing the learning 
problem into two steps. First, we train classifiers that predict whether or not two mentions are 
coreferent. The scores produced by these models are then used to define powerful features 
between clusters of mentions and prune which candidate cluster merges are considered. Using 
this feature set and constrained search space, our system is able to learn when two clusters of 
mentions should be merged with an imitation learning algorithm. Our system achieves a CoNLL 
F1 score of 63.0 on the OntoNotes 5.0 corpus, the highest reported score to date. This system 
was incorporated into CoreNLP as a fast statistical coreference system and is described further in 
Clark and Manning (2015). 

Thereafter, combining neural networks and coreference, we developed several neural-
network-based coreference systems that learn to produce effective vector representations of 
mention pairs. These systems do not rely on the complex highly engineered features commonly 
used in other coreference systems, which can become unwieldy and may generalize poorly to 
new data. We developed a neural-network based coreference system that uses a much smaller set 
of features, instead relying on distributed word representations to inform the model.  

The central component of the first new system is a neural network that produces high-
dimensional distributed representations of pairs of coreference clusters. Using these 
representations, our system learns when combining a pair of clusters is desirable. This allows 
coreference resolution to be performed with agglomerative clustering: initially, each mention is 
placed in its own singleton coreference cluster, then a pair of clusters is merged each step. We 
found applying this clustering algorithm to significantly improve accuracy over the commonly 
used mention-pair approach to coreference resolution. Training a clustering coreference system 
is challenging because the coreference decisions facing a model depend on previous decisions it 
has already made. We addressed this by applying a learning-to-search algorithm that teaches the 
model which local decisions (cluster merges) will eventually lead to a high-scoring final 
coreference partition. The resulting system substantially improved upon the current state-of-the-
art over the OntoNotes dataset and particularly excels at hard coreference resolution problems 
that require knowledge about semantic similarity to solve (e.g., “the country” and “the nation”). 
This work is described in Clark and Manning (2016a). 

Coreference resolution systems typically operate by making sequences of local decisions 
(e.g., adding a coreference link between two mentions). However, the goal of coreference is to 
have a desirable global structure (a complete set coreference clusters). Due to this difficulty, 
coreference systems are usually trained with loss functions that heuristically define the goodness 
of a particular coreference decision. These losses contain hyperparameters that are carefully 
selected to ensure the model performs well according to coreference evaluation metrics. Relying 
on hyperparameters complicates training, especially across different languages and datasets 
where systems may work best with different settings of the hyperparameters. Instead, we have 
addressed this challenge by training coreference models and reinforcement learning algorithms. 
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This directly optimizes models for coreference evaluation metrics, obviating the need for slow 
hyperparameter search. The approach also yields significant gains in accuracy. This work is 
described in more detail in Clark and Manning (2016b). This fully-learned system also gave us 
an easy opportunity to build systems for other languages, and so we also built a Chinese 
coreference system using OntoNotes data, which also achieved a new state-of-the-art 
performance. The new coreference systems were incorporated into our Java code for release in 
CoreNLP 3.7.0. 

Finally, we have improved the performance of our English coreference resolution system by 
changing the mention detection system. In particular, we eliminated various heuristic rules for 
filtering candidate mentions, which we had inherited from the earlier sieve-based coreference 
system, instead relying on the model to identify singleton mentions. This change actually 
improved the system’s CoNLL F1 score by 1.3 points on the English CoNLL 2012 data. Both 
developments will be incorporated into our TAC 2017 CS KBP System and the next release of 
Stanford CoreNLP.  

We also developed a new coreference resolution system for Spanish trained on the AnCora 
dataset. The architecture and training of the system is the same as the neural-network based 
system we previously built for English and Chinese. The system has the ability to detect and add 
coreference links to dropped pronouns, which occur frequently in Spanish. However, despite the 
new coreference resolution system for Spanish being able to detect and add coreference links to 
extract dropped pronouns, it did not perform well given the parses that were available during 
initial stages of development. To fix the issue, we also developed a rule-based system for 
coreference for connecting similar named entities via fuzzy string matching. This system gave 
better results than the previously trained coreference system, given the bad quality of parses and 
was incorporated into our KBP pipeline.  

3.6 DEVELOPMENT OF STANFORD CORENLP 
3.6.1 Overview 
Both for our own work and in general support of the DEFT program, we made many additions 
and improvements to our Stanford CoreNLP processing suite (Manning et al. 2014), including: 
• We added direct dependency parsing via a neural dependency parser. 
• We added POS tagging, NER, and constituency and dependency parsing for Spanish. 
• We added improved NER and coreference models for Chinese. 
• We added natural logic and open information extraction annotators (Angeli et al. 2015). 
• We added a KBP relation extraction annotator for all of English, Chinese, and Spanish. 
• We added new statistical and neural coreference systems. 
• We added a web services API for CoreNLP. 
• We added support for calling annotators in an annotation pipeline that are implemented as a 

web service. 
3.6.2 Details 
Throughout the project we made many extensions and improvements to our Stanford CoreNLP 
software toolkit for natural language processing, to improve analysis components, to add new 
analysis components, and to extend coverage of components to more languages. 

The 2012-11-12 release added some training data derived from Wikipedia to the English 
NER models, improved and sped up the Stanford Dependencies code in the Stanford Parser, 
upgraded SUTime, and included various other bug fixes. 
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The 2013-04-04 version 1.3.5 release included the singleton detection research to improve 
coreference resolution, which was mentioned above, speed improvements including further 
multithreading support, some Stanford Dependencies improvements, and included various other 
bug fixes. 

The 2013-06-20 version 3.2.0 release included a new and more accurate parser model. 
Additionally, it also incorporated a faster tagger and other bug fixes. 

The 2013-11-12 version 3.3.0 release added a state-of-the-art deep learning–based sentiment 
analysis model. The releases also include improvements to English and Chinese dependency 
parsers, improvements to time entity recognition and bug fixes. The 2014-01-04 version 3.3.1 
release fixed a few bugs. 

The 2014-06-16 version 3.4.0 release added a much faster shift-reduce constituency parser. 
The 2014-08-27 version 3.4.1 release added support for processing Spanish (part-of-speech 

tagging, named entity recognition, and constituency parsing. This was also the final release that 
supported Java 6 and Java 7. 

The Stanford CoreNLP version 3.5.0 (2014-10-31), 3.5.1 (2015-01-29), and 3.5.2 (2015-04-
20) releases made major enhancements in the areas of parsing and coreference. Version 3.5.0 
was the first release of our new, much, much faster neural network-based dependency parser. 
Version 3.5.1 added a natural logic annotator and one for picking out quoted material. Starting in 
version 3.5.2, the parser now outputs grammatical relations in the new Universal Dependencies 
representation (http://universaldependencies.github.io/docs/) by default (although the traditional 
Stanford Dependencies are also available, by specifying a property). Another major new feature 
in version 3.5.2 is the ability to perform co-reference resolution for Chinese. In addition to these 
changes, version 3.5.2 also includes improved new models and refinements for named entity 
recognition. 

The 2015-12-09 version 3.6.0 release includes the new more accurate statistical coreference 
system, including a faster coreference model that works on dependency parses, added our new 
OpenIE annotator, and introduced a StanfordCoreNLPServer web service, which has 
transformed the accessibility of CoreNLP to programmers working in non-JVM languages. 

The 2016-10-31 version 3.7.0 release made substantial improvements. It includes neural-
network based coreference systems for English and Chinese that are significantly more accurate 
than the previous coreference resolvers. We added a whole new set of higher accuracy 
dependency parser models that produce Universal Dependencies for English, Chinese, Spanish, 
Arabic, French, and German. There are also higher quality models for POS, NER, and 
Constituency Parsing in Spanish trained with Latin American Spanish materials, a new, 
improved German NER model, and improvements to Chinese NER including capturing 
quantifiable entities. The Stanford CoreNLP Server had bug fixes and improvements that allow it 
to work with non-English languages, match Tregex patterns (Levy and Andrew 200 on 
constituency trees and visualize constituency trees. There were also a variety of miscellaneous 
enhancements and bug fixes including improved code organization for coreference, 
improvements to the QuoteAnnotator, and the addition of sentiment extraction to the Simple 
API. 

The 2017-06-09 version 3.8.0 release included several enhancements. There was a new web 
services annotator class to help facilitate adding non-Stanford NLP algorithms to a Stanford 
CoreNLP pipeline. A non-Stanford algorithm can be wrapped in a server, and this new web 
services annotator will start the server, submit requests and integrate the responses into an 
annotation. This will be especially helpful for using Python based tools with Stanford CoreNLP, 
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for now all one has to do is wrap their Python tool in a server and they can smoothly integrate it 
into a Java Stanford CoreNLP pipeline. For instance, we use this new type of annotator to 
integrate RPI Entity Linking information with our standard NLP tools. Also, a new annotator has 
been added for attributing quotes to entities in text, the discussion forum handling has been 
improved, and there will be new models for processing Spanish and French text. The core 
processing now extends to handling emoji (!), rather than only handling the Unicode Basic 
Multilingual Plane. We have also fixed bugs and various issues with our system based on user 
feedback. We added new UD POS models for French and Spanish. Lastly, the release will 
include improvements to our coreference system.  

Finally, slightly after the official end of the DEFT program, we released CoreNLP version 
3.9.0 (2018-01-31) and version 3.9.1 (2018-02-27) which incorporated work that we did during 
the final months of the DEFT program, as well as a bunch of unrelated work on better handling 
other languages. The release included the Spanish KBP model, better NER, and new dependency 
parse model. It improved French tokenization, UD POS tagging and parsing; provided better 
German, Chinese NER; added an Arabic SR parser model; added a wrapper API for certain data 
types, quote attribution improvements; provided easier use of coreference information; and 
included miscellaneous bug fixes and minor enhancements. 
3.6.3 Integration with the BBN ADEPT framework 
Throughout the DEFT program, we also did work in integrating our software with the BBN 
Adept framework. In the early years of DEFT we made separate releases of our KBP slotfilling 
software, incorporated into the BBN Adept system. In later years of the program, we added KBP 
relation extraction as a capability of CoreNLP, which broadened the availability and usability of 
this system. Nevertheless, we still did considerable work adding benchmark and regression tests, 
adding confidences and provenances, and handling integrations for the Adept system, 
particularly in adding our output to the Adept KB. 
3.6.4 Impact 
Stanford software, principally CoreNLP, was an important part of the BBN Adept repository. It 
was used in the integrated Adept demonstration system and it was used by a number of other 
teams in their own software components. Stanford software was also used directly by the 
Research Innovation Group at DTRA (with NLP work done by MITRE) as part of DTRA 
J9CXQ – US SOCOM CWMD-T Support Program and by people in other parts of DoD. 
CoreNLP has moreover become a mainstay of basic linguistic processing that is also used by 
many researchers, startups and large companies. 
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4 RESULTS AND DISCUSSION 
4.1 KBP SLOT FILLING AND COLD START KNOWLEDGE BASE POPULATION  
During the grant, we took part each year in the annual Text Analysis Conference Knowledge 
Base Population (TAC KBP) evaluations. In early years, we did the Slot Filling (SF) or relation 
extraction task, just on English. Towards the end, the emphasis had shifted to Cold Start (CS) 
KBP and evaluation of the knowledge base, though SF results were also still calculated, and 
evaluation over all of English, Chinese, and Spanish. Once the task shifted to CS KBP, then a 
system also had to do entity linking (EL) to the knowledge base, and we used some of our own 
work in that area, but mainly depended on systems from colleagues. 
4.1.1 Experience prior to this project 
Stanford participated in the KBP Slotfilling task between 2009 and 2011. The submitted system 
placed 5th in 2009, below 5th in 2010, and 4th in 2011. We did not participate in 2012 but 
developed some strong new ideas for distantly supervised relation extraction published in 
Surdeanu et al. (2012). 
4.1.2 TAC KBP 2013 
Stanford’s 2013 KBP entry achieved an F1 of 31.36 on the 2013 evaluation data, performing 
above the median entry (15.32 F1); see Angeli et al. (2013). 

Stanford submitted 5 systems for the official evaluation. For all runs, a fixed confidence 
threshold of 0.5 was imposed based on the tuned threshold on the 2012 data. Slot fills under this 
threshold were discarded, with the exception of inferred slots which were always kept. In 
general, the first system S1 used everything we thought was best, and S2–5 either deleted 
components or added components that we were doubtful of the utility of. The five systems in 
Table 1 were: 
• S1: The reference run, incorporating every component except inference using ReVerb 

relations. 
• S2: S1, but with all the relation inference components disabled.  
• S3: S1, but with experimental ReVerb OpenIE (Fader et al. 2011) inference paths enabled.  
• S4: S1, but with inference, sentence-level competition, and additionally the hand-coded rules 

disabled. This run represents our system run with only MIML-RE and basic consistency.  
• S5: S1, but using only the 2013 docs for searching for slot fills at test time. Thus, the 

component of our system which searches for provenance given a slot fill found in another 
corpus is not relevant. 

The expected best system is S1; S2 removes inference; S3 adds ReVerb entailment rules; S4 
removes all inference and rules, relying only on MIML-RE; S5 is identical to S1 but run only 
over the official 2013 source documents. 
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Table 1: Stanford's KBP SF submissions for 2013 

 
 

Table 2: Stanford's 2013 KBP results as compared to other teams that year 
 

 
The results in Table 2 mean that we found only about one quarter of the relations that were 

found by someone (either another team or humans searching the text collection, and of the 
putative relations that we did find, only slightly more than one third of them were correct. This is 
still rather below the desirable accuracy of a textual relation extraction system! The conclusions 
we drew from these experiments and various side studies are as follows. The errors from 
incorrectly deduplicating entries would be helped by incorporating an entity linking system. The 
second class of errors – from not finding a sentence which adequately expresses the target 
relation – we thought we could address by improving our inference component to collect better 
weights for inferential paths, and to perform more holistic inference on the entity graph at test 
time with Markov Logic. The third class of errors – incorrect relation predictions – we thought 
we could mitigate by collecting crowd-sourced labels for the latent variables in MIML-RE. In 
part, this would provide valuable high-quality supervised training data, and in part it could make 
the model’s objective more convex and manageable. We believed that the relatively small loss 
incurred from using our IR versus the Gold IR implies that our IR system performs well enough 
that it is not a bottleneck in improving performance on the task. 

We achieved 6th place in the 2013 KBP slot filling evaluation. This was not only an 
enormous improvement over our last KBP Slot Filling evaluation performance (in 2011) but 
placed us among the top cluster of 6 systems with good (over 30% F1) scores, a group including 
only one other team from the U.S.A. 
4.1.3 TAC KBP 2014 

The second-year evaluation maintained use of our traditional system, using IR and MIML-
RE, but we did some ensemble runs and joint development with DeepDive systems from Chris 
Ré’s group. All the systems used NLP analyses produced by CoreNLP. The system is described 
in detail in Angeli et al. (2014). The results are shown in Table 3. 
  

2013 SYSTEMS PRECISION RECALL F1 
S1 35.8 27.9 31.4 
S2 35.9 28.4 31.7 
S3 35.1 26.7 30.3 
S4 35.3 25.6 26.7 
S5 38.2 26.7 31.5 

2013 SYSTEMS PRECISION RECALL F1 
MEDIAN TEAM 15.0 15.7 15.3 
STANFORD 2013 35.8 27.9 31.4 
TOP TEAM 42.5 32.2 37.3 
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Table 3: Stanford's 2014 KBP results 

 
The submitted systems were: 

• DeepDive (high recall): A run using DeepDive, tuned along the calibration curve to tune for 
the best F1 and correspondingly relatively biased towards recall.  

• DeepDive (high precision) A run using DeepDive, tuned along the calibration curve to favor 
higher precision (90% precision cutoff).  

• MIML-RE The MIML-RE system, as in the 2013 submission, but with the addition of 
learned patterns and the new model from Angeli et al. (2014).  

• MIML-RE (–patterns) The MIML-RE system, with all patterns removed. This is the expected 
performance of a system based entirely and only on MIML-RE and a coreference-based 
alternate names detector.  

• MIML-RE (–active) The MIML-RE system, with the model from Stanford’s 2013 
submission 

 
The precision of the DeepDive system is very impressive, but as the task is set up, TAC KBP 
remains largely a recall-bound task, and the high recall DeepDive system only modestly 
enhances recall. Our MIML-RE system achieves slightly better recall again, and so it remains not 
that far behind the DeepDive system in performance. Overall, the DeepDive high recall system 
was the strongest submitted system, and the MIML-RE system alone could have taken third 
place. 
4.1.4 TAC KBP 2015 
TAC KBP 2015 was the first outing of our third-generation relation database–backed KBP 
system. This system is described in detail in Angeli et al. (2015). In addition, it marked a period 
when we started to move away from distant supervision towards the use of crowd-source 
supervision and bootstrapping self-training methods. Our final system was an ensemble of a 
number of relation extractors, including our new work in neural and OpenIE extractors. The task 
also became more nuanced this year: systems were evaluated not only on slot fills (classic 
relation extraction) but on constructing a knowledge base, evaluated by looking at path length 1 
(hop 0) and path length 2 (hop 1) queries on the knowledge base. In the results in this report, 
shown in Table 4, we show Hop All (averaged over hop 0 and hop 1) results computed directly 
from the knowledge base (which has to observe consistency constraints, unlike independent slot 
fills). This is the most rigorous evaluation condition and numbers go down considerably versus 
last year (for obvious reasons). Results on other measures more similar to previous years showed 
that we had considerably improved the precision of individual slot fills in our system, while 
largely maintaining recall. A skew towards precision seemed desirable, to maximize the chances 
of getting path length 2 queries right, but the recall of those became rather low. 
 

2014 SYSTEMS PRECISION RECALL F1 
DEEPDIVE (HIGH RECALL) 54.4 27.8 36.8 
DEEPDIVE (HIGH PRECISION) 54.8 24.9 34.3 
MIML-RE 36.2 28.7 32.0 
MIML-RE (– PATTERNS) 35.3 26.3 30.2 
MIML-RE (– ACTIVE LEARNING) 29.2 26.2 27.6 
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The two systems submitted for KB evaluation were: 
• Stanford1 A high precision system (patterns, openie, website, altnames) for both hop0 and 

hop1. 
• Stanford2 A high recall system: the union of all models (adding supervised logistic 

regression and neural classifiers) for both hop0 and hop1. 
Stanford’s system basically matched the score of the other leading system (BBN), outperforming 
all other teams on Cold Start Hop 1 F1 (i.e., results on answering questions like “where do people 
in Gaithersburg work?”). 
 

Table 4: KBP 2015 system results on Hop All KB evaluation 

 
An interesting note about the 2015 evaluation was a comparison of machine performance to 
human performance on slot filling (as opposed to whole knowledge base construction). The 
evaluation included the performance of humans, who were given a limited time budget for 
searching for relevant information to extract to complete a slot fill. While overall human 
performance was better, due to their much higher precision, our high recall system achieved 
better fact recall than the humans, and because of that, was not too behind the humans in F1 
score (the Stanford system got about 31% recall versus about 25% recall for the humans, still 
losing out at about 28% F1 versus 37% F1 for the humans). 
4.1.5 TAC KBP 2016 
This was the first year we attempted multilingual KBP, doing English and Chinese. Full details 
of our system this year can be found in Zhang et al. (2016). In Table 5, we show our official 
scores on the CS KBP track for the languages we took part in and the overall cross-lingual 
evaluation. Our English score showed no progress from the year before but remained the leading 
system. Our own testing showed that our system was considerably better than last year’s system; 
it appeared that the evaluation set was just more difficult. Our first cut at a Chinese system was 
well below the performance of our English system, partly due to the difficulty of the language 
and partly due to us having fewer resources for Chinese and less development time. Our cross-
lingual results were further dragged down by the fact that we did not have a Spanish system. 
Note also that because of the way the Hop All results were calculated by combining Hop-0 and 
Hop-1 scores, the F1 measure for Hop All need not fall between Precision and Recall; this 
phenomenon is observed for English. 

 
Table 5: Macro-averaged LDC-MEAN KBP 2016 KB track Hop All scores 

 
 

2015 SYSTEMS PRECISION RECALL F1 
STANFORD1 (HIGH PRECISION) 48.7 9.1 15.4 
STANFORD2 (HIGH RECALL) 21.0 23.2 22.1 

2016 SYSTEMS PRECISION RECALL F1 
STANFORD ENGLISH 22.1 25.9 22.0 
STANFORD CHINESE 12.7 20.4 14.2 
STANFORD CROSS-LINGUAL 10.9 13.9 11.2 
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4.1.6 TAC KBP 2017 
For TAC KBP 2017 we submitted the only independent trilingual team doing Chinese, English, 
and Spanish relation extraction. We also participated in the Tinkerbell system with our 
colleagues. Our scores are as in Table 6, which were again the highest submitted scores. The 
English and Chinese scores show some nice progress, and our inaugural Spanish system is about 
as good as the Chinese system. We remain a little perplexed by the low cross-lingual score, 
thinking that something may have gone wrong in cross-lingual entity linking. 
 

Table 6: Macro-averaged LDC-MEAN KBP 2017 KB track Hop All scores 

 

4.2 OTHER RESULTS 
Within the work of various particular research projects, we also did many other detailed 
evaluations of particular system components. These are not all reproduced in this report, and 
readers are referred to individual papers appearing in the references. However, in Table 7, we do 
show one cumulative table showing the progress of our scores for coreference resolution. The 
figures shown in the table are for the CoNLL 2012 coreference score, which is an average of 
three scores that had previously been used to score coreference systems: MUC, B3, and CEAF-
φ4. There are differences between the scores, but, nevertheless, a score of 100 would mean 
getting all mention coreference decisions right. Because coreference resolution is essentially a 
mention clustering task, and the evaluation is of complete clusters, a few mistakes can greatly 
bring down the score. In some part coreference scores are low because it is a hard task, but in 
considerable measure the lower numbers are also due to this cluster-style evaluation, whereas 
several other NLP tasks (such as parsing and POS tagging) are conventionally evaluated at the 
level of individual decisions. In the table, bold picks out all of: the best CoNLL shared task 
scores; the best systems prior to the Stanford 2016 systems, and the best systems overall for each 
language. 
 

Table 7: Coreference resolution CoNLL score on CoNLL 2012 test set 

2017 SYSTEMS PRECISION RECALL F1 
STANFORD ENGLISH 23.8 33.3 25.4 
STANFORD CHINESE 19.6 18.1 18.0 
STANFORD SPANISH 19.2 19.8 18.6 
STANFORD CROSS-LINGUAL 12.9 13.3 11.7 

MODEL ENGLISH CHINESE 
Stanford (Lee et al. 2011) [CoNLL 2011 winner] 57.80 — 
Chen & Ng (2012) [CoNLL 2012 Chinese winner] 54.52 57.63 
Fernandes (2012) [CoNLL 2012 English winner] 60.65 51.46 
Björkelund & Kuhn. (2014) [Best previous Chinese system] 61.63 60.06 
Stanford (Clark & Manning, ACL 2015) 63.02 — 
Wiseman et al. (2016) [Best previous English system] 64.21 — 
Stanford (Clark & Manning 2016a) 65.29 63.66 
Stanford Deep RL Mention-Ranking (Clark & Manning 
2016b) 

65.73 63.88 
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5 CONCLUSIONS 
Our major goal was to innovate on new methods for text understanding and knowledge 
extraction. The project did important work in developing the use of deep learning methods for 
natural language understanding and in developing new, improved algorithms for textual relation 
extraction and coreference resolution. While full text understanding is still far from a solved 
problem, the main goals of the project were achieved. Our group produced a variety of new and 
highly influential algorithms. During the early years of the project, our group produced much of 
the most cited work in using deep learning for natural language understanding, before use of 
these techniques disseminated more broadly. Our algorithms posted state-of-the-art results on a 
number of domains and tasks, and, partly through our making our algorithms broadly available in 
an integrated fashion through our CoreNLP software framework, they have had a considerable 
influence. The algorithms have seen considerable use, by many people in academia, government, 
the military, and industry. Our systems were adapted to handle both formally written sources like 
newspaper articles and from informal sources such as web forums. The system was extended to 
work in multiple languages, with our work covering English, Spanish, and Chinese. Overall, our 
work went some distance to showing that it was practical to automatically populate a knowledge 
base from a collection of raw text documents. Nevertheless, there remain many issues where 
further work is likely needed for robust deployment to be possible. These include all the well-
known cases of NLP errors, ranging from mistakes in linking textual entity mentions to 
knowledge base entities, failures in entity mention recognition and correct parsing of text, and 
sins of omission and commission in asserting relations between entities. Nevertheless, our new 
generation of mainly neural network–based tools have brought NLP systems to a new level of 
performance. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
CCG  Combinatory Categorial Grammar 
CKY  Cocke-Kasami-Younger. The basic O(n3) context-free grammar parsing technique 
CoNLL The Conference on Natural Language Learning (and its shared tasks) 
CS  Cold Start 
CVG  Compositional Vector Grammar (a grammar over real-valued representations) 
DEFT  Deep Exploration and Filtering of Text (the DARPA program behind this work) 
EL  Entity Linking 
F1  Equally weighted harmonic mean of precision and recall 
GPE  Geopolitical entity (a named entity recognition class) 
IR  Information retrieval 
JVM  Java Virtual Machine 
KB  Knowledge Base 
KBC  Knowledge Base Completion 
KBP  Knowledge Base Population 
LSTM  Long short-term memory (an effective sort of neural sequence model cell) 
MIML  Multiple-instance, multiple-label 
MIML-RE Multiple-instance, multiple-label relation extraction 
NaturalLI Natural Logic Inference (a system using natural logic for KBC) 
NER  Named Entity Recognition 
NIST  National Institute of Standards and Technology 
NLP  Natural Language Processing 
NN  Neural Net 
NTN  Neural Tensor Network 
OpenIE Open Information Extraction 
PCFG  Probabilistic Context-Free Grammar 
POS  Part-of-Speech (tagging) 
RNTN  Recursive Neural Tensor Network 
SF  Slot Filling 
TAC  Text Analysis Conference 
TACRED TAC Relation Extraction Dataset 
TreeRNN Tree Recursive Neural Network 
UD  Universal Dependencies (a common annotation framework for languages) 
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